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LRU IS BETTER THAN FIFO UNDER
THE INDEPENDENT REFERENCE MODEL
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Abstract

Consider a two-level storage system operating with the least recently used (LRU)
or the first-in, first-out (FIFO) replacement strategy. Accesses to the main storage are
described by the independent reference model (IRM). Using the FKG inequality, we
prove that the miss ratio for LRU is smaller than or equal to the miss ratio for FIFO.
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1. Introduction

Consider a storage system which consists of two levels, named main storage and
secondary storage. Suppose there are n items, denoted by 1, 2,-- ., n, which can be
located in secondary or main storage. The main storage can contain at most m
items. Items never leave the system and no new items enter the system. If an item is
required, first the main storage is inspected. If it is not present there, it is taken from
secondary storage and put in main storage. If the main storage is already full, an item is
removed to secondary storage according to some replacement algorithm. This situation
occurs for instance in computer systems with paged main and secondary memory (see
e.g. Matick (1977)).

We restrict our attention to the well-known least recently used (LRU) and first-in,
first-out (FIFO) algorithms. In the case of FIFO, that item is replaced which has been in
main storage for the longest time. In the case of LRU that item is replaced whose last
reference was earliest among those items in main storage. Furthermore we assume that
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the string of page references is a sequence of i.i.d. random variables. This is known as the
independent reference model (IRM). There is much literature on these systems; for
references see Aven et al. (1987), Chapters 4 and 5.

We are interested in the miss ratio, which is defined as the steady-state probability that
the item currently required is not in main storage (in computer storage terms, this is the
frequency of page faults). It is widely believed that, under the IRM, the miss ratio for
LRU is smaller than or equal to the miss ratio for FIFO (see Aven et al. (1987), who
formulate this as a special case of a more general monotonicity conjecture for an indexed
family of replacement algorithms; another special case of that conjecture has been
proved by Kan and Ross (1980)). We give a proof based on the FKG inequality.

2. Formal statement of the result

Consider the IRM model described in Section 1. Let S = {1,- - -, n} be the set of
items, p =(py, D, + -, D,) their reference probabilities and m the size of main storage.
To avoid trivialities we assume that p,,- - -, p, are strictly positive and that m =< n. The
miss ratio, introduced before, depends on p, m and the replacement algorithm A4, and is
denoted by F,,(4, p). When the context is clear, we omit one or more of the parameters.

Let {& } .o be a sequence of independent and identically distributed random vari-
ables with P(§,=j)=p;,j =1, 2,- - -, n. When we regard &, as the item currently being
referenced and &, the kth item previously referenced, k = 1,- - -, it is not difficult to see
that for LRU the miss ratio, defined in the introduction, is equal to

F,,(LRU) = P(&, is not equal to one of the first m distinct values
(1) in the sequence &, &, - - +).

Further, it is clear that, for distinct x,,- - -, X, €S,

P(the first m distinct values in the sequence &,, &, - - - are, in order of
occurrence, equal to x;, Xa,+ * +, X,)

2
( ) pxz pxg . px,,

lnpxll—pn—px: l_pxn—"'—pxﬂ.-x.

= Dx,

Combining (1) and (2) yields the following result by King (1971):

(3) Fm(LRU)= 2 Dy, Dy, * 'px,..(l — Dxy ™ Dx,™ * " — px,.)
Geexmed (1= P )1 = Py = Do) (1 = Py = Py =+ — Dx,)

>

where the sum is over the set
4) A={(x, -, xx)ES™: Xy, * +, X, are distinct}.
As to FIFO, it has been shown by King (1971) and Aven and Sokolov (1971) that

2 PuPn Dl = DPy—Po— tr — D)
(5) F,,(FIFQ) = A

Y DPuDy D

(x1,0 -, Xm)EA
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See also Aven et al. (1987), Section 4.6, for a discussion of the above results. We prove
the following theorem.

Theorem. Under the independent reference model F,,(LRU) < F,,(FIFO).

The proof is based on the FKG inequality (Fortuin et al. (1971)). This inequality is as
follows.

Let Q be a finite set, < a partial order on Q and u a weight function (measure) on Q.
We say that (Q, <, ) satisfies the FKG conditions if, for all x, y, z E€Q:

(i) thereexist x A y and x v y, which are (respectively) the largest (smallest) element of
Q smaller (larger) than x and y;

(i) xA(yvz)=((xAy)v(xaz)

(1) pu(x) Z 0; u()u(y) = plx Ayu(x v y).

A function fon Q is increasing if x <y implies f(x) = f(y).
The FKG inequality says that if (Q, <, u) satisfies the FKG conditions, then, for all
increasing functions fand g,

(©) Eﬂu()c)f(x)g(x) gnu(y)z Eﬂﬂ(X)f(x) EEQ w(»)gy).

It should be noted that (i)-(iii) are sufficient but not necessary conditions for (6) to
hold. The conditions (i) and (ii) together are equivalent to saying that (Q,<) is a
distributive lattice. The FKG inequality has been extensively used in statistical mecha-
nics and related fields. A different type of application is L. Shepp’s proof of the XYZ
conjecture (Shepp (1982)). A well-known special case is that where Q is a product of
totally ordered finite sets, u is a product measure on Q and < is the natural partial order
on Q. This case is also known as Harris’s inequality (Harris (1960)).

3. Proof of the theorem

Without loss of generality we may assume that p, = p, = - - - = p,.

For x = (x,,- - -, X, JES™ let u(x) = p,, Dx,* * * Dx» and define x <y iff x, =y, i =
1., m.

It is easy to verify that (S™, <, u) satisfies the FKG conditions. In particular we have
X Ay = (min(x,, y,),- - -, min(x,,, ,,)) and x vy = (max(x,, y1),* - -, max(x,,, y,)). In
fact this is the special case corresponding to Harris’s inequality, mentioned at the end of
Section 2. However, this special case is not suitable for our purpose. We are essentially
interested in A (see (4)), but A, with the partial order defined above, clearly violates (i) in
the FKG conditions. In spite of this fact, the following lemma concerning A holds.

Lemma. Let fand g be functions on A and let f or g be permutation invariant (i.e.
independent of the order of its arguments). If f and g are increasing, then

@) T ux)f)gx) T uy)z T ulx)fx) §Au(y)g(y).

XEA YEA XEA

Equivalently, if f is decreasing and g increasing,
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Y ulx) flx)g(x) 2 u(y) = 2 w(x) fix) T p(y)gy).
xEA YEA
Proof of the lemma. We prove the first part of the lemma. The second part then
follows directly after replacing f by — f. So let fand g be increasing and suppose at least
one of them, say f, is permutation invariant. Let IT be the set of all permutations of

(1,---,m). Forr €Il and x = (x,, - -, x,,) ES™ define 7(x) = (Xpay> Xey* * * > Xm)-
Let the set Q be defined by
Q={(x;, ", X)ES" 1 X, <Hy < -+ - <Xp -

Since © C S™ we may consider the restriction of g and < to Q. Since we already know
that (S™, <, u) satisfies the FKG conditions, the only thing we have to do to ensure that
(Q, <, u) satisfies the FKG conditions is to check that Q is closed under A and v. So
assume x,yEQand 1 =i <j=m.Then(x vy); 2 x; > x;and (x vy), Z y; > y;, hence
(x vy); >max(x;, y;) =(xvy),. Similarly, (xAy), =x;,<x; and (xAp), =y <y,
hence (x A y); <min(x;, y;) = (x A y);. We conclude that Q is indeed closed under A and
v and (Q, <, u) satisfies the FKG conditions.

The inequality (7) can now easily be derived:

Y oux) fix)g(x) L u(y)= 3 T u@x)f(n(x)gr(x)) ¥ ¥ um(y))

XEA YEA xEQ n€Il y€EQ n€ll
= 3 ux)fIx) ¥ glnx)ym! ¥ u(y)
XEQ n€ll yEQ
zm! ¥ u(x)flx) Z w(y) 2 g@(y))
XEQ nEll
gAu(X)f(X) > u(»)g(y).

The first equality follows from the definition of Q and A, the second from the
permutation invariance of fand u. The inequality follows from the FKG inequality (6)
(note that, since g is increasing, for every n the function y — g(n(y)) is increasing and
hence the function y — Z ¢ g(n(y)) is increasing). The last equality follows again from
the definition of A and Q and the permutation invariance of fand u.

Proof of the theorem. The theorem follows now as an application of the lemma: note
that (3) can be written as follows:

) F,(LRU) = EA/J(X)f(X)g(X),

where the functions fand g are defined by

f(xl" : '7-xm)= 11— Dxy = Pxy ™ * " " — Dxp>»
and
1

g(x:"'i m)= .
‘ =)= D= D) (L= po— -+ —p,. )
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It is immediately clear that fis decreasing and permutation invariant and that g is
increasing.
Applying the above lemma to (8) yields:

F,(LRU) X p(y) = ¥ p(x)fx) T n(»)g(y).

YEA XEA YEA
Note that, by (2) and the definition of x and g,

Y u(y)g(y) = P(the sequence &, &, - - - contains at least m different items) = 1.
YEA

Hence,

2 u(x) flx)

F,(LRU) = % )

xEA

which, by (5) and the definition of 4 and f, equals F,,(FIFO).
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